*forward, reverse, forward boustrophedon, reverse boustrophedon*) starting from each of the four corners.

Because the number of doubled and tripled letters is a simple measure of whether a transposition is likely to be plausible or not, I counted those up as well. The next metric to calculate would be the unique letter adjacency count (i.e. how many unique pairs of letters appear for each ordering)... but that's a task for another day.

Interestingly, transpositions starting from the top-left corner (

*and their reverse-order reflections in the bottom-right corner*) have no triple-letters at all, as well as far fewer double-letters (

*9/10/11 compared to 13/14/15*) than transpositions that start from the top-right. Though intriguing, I don't know if this is statistically significant: I haven't determined what the predicted doublet and triplet count would be for a totally randomised transposition, perhaps calculating that too that would be a good idea.

For any passing cryptologers, here is the ASCII version of the d'Agapeyeff cipher (as output by the C++ code) when arranged as a 14x14 grid (

*in numerical order but without J*), followed by the 16 diagonal transpositions with their associated double & triple counts. My guess is that the top left corner reverse diagonal transposition (

*the second one down, starting "KBDMIDPIK..."*) is most likely to be the correct transposition, but we shall see (

*hopefully!*) if this is true...

K B M P Q B Q D L D Q I P O

D I I M O N L C L L I I M B

D K N M O Q K I E N

**S**

__K K K__C E E L C L K P K K D B M R

P I C M K I N L E

**O P D P**

__L__D P P C M G B N B

**L G L D**

__L__C K M L D N C M P

__L__**Y**

__C C C__I L Q Q O C P O E D P E B T

B B P Q P Q I Q G K D E K F

E N B D I L M O B M D Q L S

E B D O O Q N P I Q L E G I

N N P

**N D B G B E B N K R**

__M__G C M

**G G N M P O K M L N**

__M__G O B

**N K L D K I P L B R**

__M__*** Top left corner ***

Forward order...

KDBDIMCKIPPENMQDIEMOBCPCLONQIKPMCQLDBLMCKLKCLEBQLMIKILDE

NPQDGNPELQNBBQONBLKNIIGNDDPCCNEKKIPGCPOIQPMBLDKMOOMMOLIO

PLOBKBBMNQMQELLPMSMGDNOGDCGDRNGBPBKPCLPKNGIMDECDLMBQDEBY

DPELQKTKOBELFIKNGSPMKILLRBNR

--> number of doubles = 11, number of triples = 0

Reverse order...

KBDMIDPIKCQMNEPBOMEIDQNOLCPCDLQCMPKILCKLKCMLBDLIKIMLQBEQ

LEPNGDQPNEIINKLBNOQBBNPIKKENCCPDDNGOMKDLBMPQIOPCGBKBOLPO

ILOMMOSMPLLEQMQNMBRDGCDGONDGMPLCPKBPBGNDCEDMIGNKYBEDQBML

TKQLEPDFLEBOKSGNKIIKMPRLLNBR

--> number of doubles = 9, number of triples = 0

Simple boustrophedon (forward then reverse)...

KBDDIMPIKCPENMQBOMEIDCPCLONQDLQCMPKIBLMCKLKCLDLIKIMLQBEE

NPQDGNPELQIINKLBNOQBBNGNDDPCCNEKKIPOMKDLBMPQIOPCGOMMOLIO

PLOBKBSMPLLEQMQNMBMGDNOGDCGDRPLCPKBPBGNKNGIMDECDYBEDQBML

DPELQKTFLEBOKIKNGSIKMPLLRNBR

--> number of doubles = 10, number of triples = 0

Reverse boustrophedon (reverse then forward)...

KDBMIDCKIPQMNEPDIEMOBQNOLCPCIKPMCQLDLCKLKCMLBEBQLMIKILDQ

LEPNGDQPNENBBQONBLKNIIPIKKENCCPDDNGGCPOIQPMBLDKMOBKBOLPO

ILOMMOBMNQMQELLPMSRDGCDGONDGMNGBPBKPCLPDCEDMIGNKLMBQDEBY

TKQLEPDKOBELFSGNKIPMKIRLLBNR

--> number of doubles = 9, number of triples = 0

*** Top right corner ***

Forward order...

OPBIMSQIKRDIKMPLLKBDDDLNDPLYQCEKOGCTBLIKLLCBFQNKPELCEKSP

OQKLBLPELIMMOLNNPDDQGRBIMCIBMEKDEKNKINLKGCOGMLNLRDKEMMNP

QBQBMBDECCDCIOIEKLCIPLOQMPBOPPPMQPLNGPIDKQQIQBMKCLPDODND

IBBONGLBNDMGKEBPMNENMMNCBGOG

--> number of doubles = 14, number of triples = 2

Reverse order...

OBPSMIRKIQPMKIDDDBKLLYLPDNLDTCGOKECQFBCLLKILBSKECLEPKNQI

LEPLBLKQOPRGQDDPNNLOMMNKEDKEMBICMIBRLNLMGOCGKLNIKBMBQBQP

NMMEKDLKEIOICDCCEDPOBPMQOLPICIPGNLPQMPPKMBQIQQKDDNDODPLC

LGNOBBIKGMDNBNMPBEMMNEBCNOGG

--> number of doubles = 15, number of triples = 1

Simple boustrophedon (forward then reverse)...

OBPIMSRKIQDIKMPDDBKLLDLNDPLYTCGOKECQBLIKLLCBFSKECLEPKNQP

OQKLBLPELIRGQDDPNNLOMMBIMCIBMEKDEKNRLNLMGOCGKLNIKDKEMMNP

QBQBMBLKEIOICDCCEDCIPLOQMPBOPIPGNLPQMPPDKQQIQBMKDNDODPLC

IBBONGLKGMDNBEBPMNMMNENCBOGG

--> number of doubles = 13, number of triples = 0

Reverse boustrophedon (reverse then forward)...

OPBSMIQIKRPMKIDLLKBDDYLPDNLDQCEKOGCTFBCLLKILBQNKPELCEKSI

LEPLBLKQOPMMOLNNPDDQGRNKEDKEMBICMIBKINLKGCOGMLNLRBMBQBQP

NMMEKDDECCDCIOIEKLPOBPMQOLPICPPMQPLNGPIKMBQIQQKDCLPDODND

LGNOBBIBNDMGKNMPBEENMMBCNGOG

--> number of doubles = 14, number of triples = 0

*** Bottom right corner ***

Forward order...

RNBRLLIKMPSGNKIFLEBOKTKQLEPDYBEDQBMLDCEDMIGNKPLCPKBPBGNR

DGCDGONDGMSMPLLEQMQNMBBKBOLPOILOMMOOMKDLBMPQIOPCGPIKKENC

CPDDNGIINKLBNOQBBNQLEPNGDQPNEDLIKIMLQBELCKLKCMLBDLQCMPKI

QNOLCPCBOMEIDQMNEPPIKCMIDBDK

--> number of doubles = 11, number of triples = 0

Reverse order...

RBNLLRPMKIIKNGSKOBELFDPELQKTLMBQDEBYKNGIMDECDNGBPBKPCLPM

GDNOGDCGDRBMNQMQELLPMSOMMOLIOPLOBKBGCPOIQPMBLDKMOGNDDPCC

NEKKIPNBBQONBLKNIIENPQDGNPELQEBQLMIKILDBLMCKLKCLIKPMCQLD

CPCLONQDIEMOBPENMQCKIPDIMDBK

--> number of doubles = 9, number of triples = 0

Simple boustrophedon (forward then reverse)...

RBNRLLPMKISGNKIKOBELFTKQLEPDLMBQDEBYDCEDMIGNKNGBPBKPCLPR

DGCDGONDGMBMNQMQELLPMSBKBOLPOILOMMOGCPOIQPMBLDKMOPIKKENC

CPDDNGNBBQONBLKNIIQLEPNGDQPNEEBQLMIKILDLCKLKCMLBIKPMCQLD

QNOLCPCDIEMOBQMNEPCKIPMIDDBK

--> number of doubles = 10, number of triples = 0

Reverse boustrophedon (reverse then forward)...

RNBLLRIKMPIKNGSFLEBOKDPELQKTYBEDQBMLKNGIMDECDPLCPKBPBGNM

GDNOGDCGDRSMPLLEQMQNMBOMMOLIOPLOBKBOMKDLBMPQIOPCGGNDDPCC

NEKKIPIINKLBNOQBBNENPQDGNPELQDLIKIMLQBEBLMCKLKCLDLQCMPKI

CPCLONQBOMEIDPENMQPIKCDIMBDK

--> number of doubles = 9, number of triples = 0

*** Bottom left corner ***

Forward order...

GOGBCNMMNENMPBEKGMDNBLGNOBBIDNDODPLCKMBQIQQKDIPGNLPQMPPP

OBPMQOLPICLKEIOICDCCEDBMBQBQPNMMEKDRLNLMGOCGKLNIKNKEDKEM

BICMIBRGQDDPNNLOMMILEPLBLKQOPSKECLEPKNQFBCLLKILBTCGOKECQ

YLPDNLDDDBKLLPMKIDRKIQSMIBPO

--> number of doubles = 14, number of triples = 2

Reverse order...

GGONCBENMMEBPMNBNDMGKIBBONGLCLPDODNDDKQQIQBMKPPMQPLNGPIC

IPLOQMPBOPDECCDCIOIEKLDKEMMNPQBQBMBKINLKGCOGMLNLRBIMCIBM

EKDEKNMMOLNNPDDQGRPOQKLBLPELIQNKPELCEKSBLIKLLCBFQCEKOGCT

DLNDPLYLLKBDDDIKMPQIKRIMSPBO

--> number of doubles = 15, number of triples = 1

Simple boustrophedon (forward then reverse)...

GGOBCNENMMNMPBEBNDMGKLGNOBBICLPDODNDKMBQIQQKDPPMQPLNGPIP

OBPMQOLPICDECCDCIOIEKLBMBQBQPNMMEKDKINLKGCOGMLNLRNKEDKEM

BICMIBMMOLNNPDDQGRILEPLBLKQOPQNKPELCEKSFBCLLKILBQCEKOGCT

YLPDNLDLLKBDDPMKIDQIKRSMIPBO

--> number of doubles = 13, number of triples = 0

Reverse boustrophedon (reverse then forward)...

GOGNCBMMNEEBPMNKGMDNBIBBONGLDNDODPLCDKQQIQBMKIPGNLPQMPPC

IPLOQMPBOPLKEIOICDCCEDDKEMMNPQBQBMBRLNLMGOCGKLNIKBIMCIBM

EKDEKNRGQDDPNNLOMMPOQKLBLPELISKECLEPKNQBLIKLLCBFTCGOKECQ

DLNDPLYDDBKLLDIKMPRKIQIMSBPO

--> number of doubles = 14, number of triples = 0

## No comments:

Post a Comment